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ABSTRACT

In this paper we study the topology of the strata, indexed by number
partitions A, in the natural stratification of the space of monic hyperbolic
polynomials of degree n. We prove stabilization theorems for removing
an independent block or an independent relation in A. We also prove
contractibility of the one-point compactifications of the strata indexed
by a large class of number partitions, including A = (k™,1"), for m >
2. Furthermore, we study the maps between the homology groups of
the strata, induced by imposing additional relations (resonances) on the
number partition A, or by merging some of the blocks of A.

1. Introduction

The space of monic hyperbolic polynomials of degree n is naturally stratified by
fixing the multiplicities of the roots. In this paper we study the topology of these
strata. The topological aspects of the spaces of polynomials with multiple roots
have been extensively studied, see e.q., [1, 2, 10, 11, 13, 14]. As the general
motivation we would like to mention the widely-branching program of studying
the topological properties of certain subsets of some fixed function space, namely
of the spaces of functions with singularities of some fixed type (also known as
discriminants).
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Here we study the discriminants in the function spaces of all hyperbolic poly-
nomial maps from R" to R?, but there is a very large number of other important
examples:

e spaces of knots, i.e., nonsingular imbeddings S — 53, e.g., see [12];
¢ spaces of complex polynomial maps, or, more generally, of systems of poly-
nomials, see for example {13, Theorem 4, p. 126}, and [4], for a connection
between these two cases;
e spaces of nonsingular deformations of differentiable manifolds;
and many others. V. Vassiliev’s book [13] provides a very extensive overview of
the developments and the current state of the art in this area.

The case of hyperbolic polynomials has been considered before, most impor-
tantly in [10], where a simplicial complex of a combinatorial nature &, was de-
scribed, such that the double suspension of §, is homeomorphic to H/yp\&‘ Here
H/yp\f\‘ is a one-point compactification of the strata of the space of all monic hy-
perbolic polynomials of degree n, which is indexed by the number partition A;
the exact definition is given in Subsection 2.1.

In this paper we are working further with this combinatorial model. By using
the techniques of the Discrete Morse Theory as well as direct algebro-topological
arguments, we are able to compute homology groups of H/yp\t\l and even, in some
cases, determine the homotopy type of m, for several previously unknown
classes of A.

We would like to emphasize the combinatorial aspect at this point. The
methods which we use are combinatorial. In fact, we are working exclusively
with posets of compositions, which can be considered as objects of internal com-
binatorial interest, even though their appearance was mainly motivated by the
topological questions about H/yp\t\‘

Boris Shapiro has suggested to me in a private conversation, [9], that there
might exist a general algorithm for computing the homology groups (or even
better, the homotopy type) of ﬁ}—lp\’; for general A. The results of this paper
along with the idea of the resonance category, introduced in [15], may be used as
the first step on this path.

Here is a short summary of the contents.

Section 2. Notations and terminology are introduced. The description of the
Shapiro-Welker combinatorial model for m is given. The relevant results of
Discrete Morse Theory are outlined for later use.

Section 3. Here the bulk of our results is concentrated. In Subsection 3.1, we
prove the First Stabilization Theorem which allows one to remove an indepen-
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dent block from a number partition A. Furthermore, Theorem 3.2 describes, in
particular, a large class of partitions A (to which, for example, A = (k™,17),
m > 2, belongs), for which H/yp\;1 is contractible.

In Subsection 3.2, we prove the Second Stabilization Theorem which allows
one in some situations to remove a relation from a partition. We also study the
maps between simplicial complexes d, which are induced by imposing additional
relations (resonances) on the number partition A, or by merging some of the
blocks of A.

Section 4. We describe some remaining open questions and perspective
developments.
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2. Methods

2.1. COMPOSITIONS, NUMBER PARTITIONS, AND THE INDEXING OF STRATA.
An ordered tuple of positive integers A\ = [7y,..., 7] is called a composition,
or sometimes a composition of n, where n = m; + --- + m;. When this tuple is
taken unordered, A is called a number partition of n, we write A = (mq,...,m),
and A F n. For number partitions, we also use the power notation:

(n% ..., 1%) = (n,...,n,...,1,...,1).
| p— N’
a2} (3]

Both for number partitions and compositions, we call ;’s the blocks of A. The
length of A is the number of blocks and is denoted {()). Given a composition of
n, its type is the number partition of n, which is obtained from the composition
by forgetting the order of the blocks (in the text we often reflect it by changing
the square brackets to round ones).

Let Hyp™ C R™ be the space of all monic hyperbolic polynomials (a polynomial
is called hyperbolic when all of its roots, and hence its coefficients, are real
numbers), and H/yp its one-point compactification. There is a standard cell
decomposition of H/yF which we now proceed to describe. For a composition
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[a1, ..., 4] of n, we denote by Hypy,,, ., the topological space of all hyperbolic
polynomials (z — r1)®* - -+ (z — r¢)** such that r; < -+ < r;. Given a number
partition A of n, we denote by Hyp% the closure (in Hyp™) of the union of all

cells Hypg,, . where the composition [ay,. .., o] is of type A. We denote the

caaig]?

one-point compactification of Hyp% by ﬁy-p\';

2.2. THE SHAPIRO-WELKER MODEL. The set of all compositions of n is par-
tially ordered by refinement. Namely, let z = [ay,...,q;z)) and y= [Bi,. .., Byy))
be two compositions of n; we say that x < y ifand only if a; = B, _, 11+ -+ 8,
for 1 < j < l(z), and some 0 = ig < i1 < -+ < 45 = I(y). Since B; > 0, for
i=1,...,l(y), the indices 71,...,44)_1 are uniquely defined. In this situation,
we set g(y,x,3;) = j if and only if 4;_, +1 < i < 45.

Given a number partition A = (7y,...,m) of n, we define D) to be the poset
consisting of all compositions of n which are less than or equal to some compo-
sition of n of type A. D, has a minimal element, the composition consisting of
just the number n, and it is easy to see that Dy U {i} is a lattice, where 1 is an
adjoint maximal element.

Since the lower intervals of D, are boolean algebras, and D, itself is meet-
semilattice, there exists a unique simplicial complex, which we denote by 4y,
such that D, is the face poset of d, i.e., the elements of D, and the simplices of
dy are in bijection, and the partial order relation on D) corresponds under this
bijection to the inclusions of simplices of d,. In particular, when I(\) = 1, we
have 6y = 0.

This bijection is the reason why we chose an order convention on the com-
positions as opposed to the customary one in combinatorics: we want to have
an order-preserving bijection, not an order-reversing one.

The simplicial complex &, is important for the following reason.

THEOREM 2.1 ([10, Theorem 3.5(a)]): Let A be a number partition of n. Then
the one-point compactification of the strata indexed by A, HypY, is homeomorphic
to the double suspension of the simplicial complex §y.

2.3. TERMINOLOGY OF RESONANCES. It turns out that 4, depends only on
the set of various equalities of sums of different parts of A (resonances), not on
the exact numerical values of the parts of A. This can be formalized as follows.

Definition 2.2: (a) Given a composition of n, a = [my,...,7(q)], a resonance
of a is an unordered pair ({41, ...,%&}, {j1,- -, Jm}) of nonempty disjoint subsets
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of {1,...,1l(a)}, such that
(2.1) My + oo+, =5 4Ty

We denote the set of all resonances of o by Res a.
(b) Given a number partition A + n, we denote by Res A the set of all Resq,
such that o has type A.

For every positive integer k, the permutation action of Sy on [k] induces an
Sk-action on the set of all compositions of length &, and hence also on the set
{Resa| « is a composition of length k}. The orbits are indexed by number
partitions, and Res A is the orbit of this action indexed by A. For example,
Res(8,3,3,3,1) = Res(7,5,4,4,4).

The notion of a resonance is important, because if A and X have the same set
of resonances, then the spaces H/yp\gf and ﬁyp\; are homeomorphic.

We will abuse the language and call an equality of the form (2.1) itself a res-
onance. We will also say that « (or A) has this resonance. Where it does not
lead to confusion, we shall often say “the set of resonances of the number par-
tition A”, instead of saying “the set of resonances of some composition of type
A7, If in (2.1), k = m = 1, then the resonance is called trivial, otherwise it is
called nontrivial. The resonance m;, + --- + m;, = m; +---+ m;  is said to
involve blocks m;,,...,m;,,m;,...,m; ; correspondingly, these blocks are said
to be involved in this resonance.

A block 7; of a composition is called independent if, whenever 7;, +- - -+m;, =
7, + -+ m;,, and 41 = 1, there exists 1 < ¢ < m such that there is a trivial
resonance 7; = m;_. If a block is not involved in any resonance then it is called
strongly independent.

Clearly, given a block in a number partition A, the corresponding block is
independent, resp. strongly independent, in all compositions of type A if and
only if it is independent, resp. strongly independent, in any one such composition.
Therefore, we have a well-defined notion for a block of a number partition to be
independent, resp. strongly independent.

If A= (m,my,...,mx)=1) is a number partition such that 7 is strongly inde-
pendent, then for any x € D) there exists a number 1 < py(z,7) < I(x) such
that, whenever y > = and y is of type A, we have p)(z,7) = g(y,z, 7), i.e., this
number does not depend on the choice of y.

More generally, if = is independent, but not necessarily strongly independent:
say the trivial resonances in which it is involved are 7 = mq, ..., @ = g, then
the multiset {g(y,z,m)| i = 1,...,k} U {g(y,z,m)} does not depend on the
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choice of the composition y of type A, such that y > 2. In such a situation,
if z = [al,...,al(w)], we say that a; contains the block =, if j belongs to
the multiset {g(y,z,m)| i =1,...,k} U {g(y,z,7)}. We refer to the number of
occurrences of j in this multiset as the number of copies of m contained in a;.

2.4. DISCRETE MORSE THEORY. For a regular CW complex &, we denote by
P(4) its face poset, the empty face included as a minimal element. Vice versa,
for a poset P, §(P) denotes the simplicial complex which is the nerve {order
complex) of P; see [7, 8] for the first appearances of the nerve of a category.
Recall also the following terminology.

Definition 2.3: Let X be a regular CW complex. Assume that F; and F, are
cells of X such that F, is a maximal cell which contains F;, and there is no
other maximal cell containing F;. A collapse is the replacement of X with
X N{F| F1 C F}. A collapse is called elementary if dim F; + 1 = dim F5.

Clearly, a collapse is a strong deformation retract, hence it preserves the
homotopy type of the space.

Let ¢ be a regular CW complex. A matching W on P = P(8) (cf. [5, Defini-
tion 9.1]) is a set of disjoint pairs (o, 7) such that 7,0 € P, 7 > o, (“>” denotes
the covering relation). We set

W= {0 € P| there exists 7 such that (g,7) € W},
W= {7 € P] there exists o such that (o,7) € W}.

If (o,7) € W then we set W(o) = 7.

Definition 2.4 (cf. [5, Definition 9.2]): A matching is called acyclic if it is im-

possible to find a sequence ag,...,0¢ € W such that o¢ # o1, 0g = 0y and
W(o)) = oig1 for0<i<t -1

Note that if a matching is acyclic, then not all 0-cells are matched with 1-cells.

A cell o is called critical if either it is the empty cell, or it is a 0-cell matched
with the empty cell, or o ¢ W U W; in the latter case o is called nontrivial
critical. Let m;(W) denote the number of critical ¢-cells.

Note: Alternatively, we could just omit the empty cell from the cell complex.
However, we choose to keep it, and have a somewhat more complicated definition
of the critical cells, first, since the empty cell is natural in our applications, and
second, since the formulation of the Theorem 2.5 is somewhat smoother in that
version, as a complete matching is a standard object in combinatorics.
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We need the following result; see also [6, Theorem 3.2}, [5, Theorem 9.3], and
(5, Corollary 3.5].

THEOREM 2.5: Let § be a regular CW complex of dimension d, and let W be
an acyclic matching on P(8). Then § is homotopy equivalent to a CW complex
oM, which has m;(W) cells of dimension i. In particular, if the acyclic matching
is complete, then ¢ is contractible.

The basic idea of the proof is that the combinatorial condition of acyclicity
allows us to arrange the collapses in a sequence and perform them one after the
other.

3. Results

3.1. APPLICATIONS OF DISCRETE MORSE THEORY. We begin by proving
a theorem which allows one to remove an independent block from a number
partition.

FIRST STABILIZATION THEOREM 3.1: Let A = (wy,...,m;) be a number partition
of n, such that m, is independent.

(a) If my is not strongly independent, i.e., my = m;, for some 2 < i < t, then
the simplicial complex 8, and therefore also the topological space H/yp\f\',
is contractible.

(b) If, on the other hand, my # m;, for all 2 < i < t, then §, is homotopy equiva-
lent to susp 6;, corresponding]yH/yp\’; ~ susp H/yp\g, where & = (ma, ..., 7).

Proof: (a) For any a = [a1,...,qy(q)] € Dy let ¢(a), resp. v(a), be the smallest
index of a block of a which is equal to y, resp. larger than m; and containing at
least one copy of 3, if such exists; otherwise put t(a), resp. vy(a), equal to occ.
Clearly at least one of the numbers ((a) and 7(a) is finite. Since :{(a) # v(a),
the elements of D, split into two disjoint sets: A = {a € Dy| t(a) > v(a)} and
B = {a € D,| 1(a) < v(a)}.

Consider the following matching W on Dj,. For

a = [al, .. .,al(a)], b= [ﬁl,. . .,ﬁl(b)] € Dy,
a € A, be B, we have (a,b) € W if and only if I(a) + 1 = I(b), and
a; = [, fori=1,...,u(b) - 1;

aypy = Bup) + Bupy+1s
a; = i1, for i = o(b) + 1,...,{(a).
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Note that in such a case ¢(b) = v(a) and ¢(b) < I(b) — 1.

Given a € A, by the definition of W, there exists a uniquely defined b € B
such that (a,b) € W; conversely, given b € B, one obtains a unique @ such that
(a,b) € W by breaking the block 3, into the blocks 7y, 3, — 71 (exactly in
this order).

It is clear that these procedures are inverses of each other, thus W is a well-
defined matching. Furthermore, W is complete. Note that the empty simplex
[m1 + -+ m] is matched with the vertex [my,72 + --- + 7). We have W=4
and W =5

The topologically inclined reader may think of this matching as a set of
elementary collapses. We shall now check that they in fact can be arranged
in a sequence of collapses, by checking that W is an acyclic matching. Consider
a sequence ag, - ..,a; € A, such that agp = ag, a; # a;41 and W(a;) > a;41, for
i=0,...,k — 1. The simple but crucial observation is that «(W{(a;)) > y(@i4+1)-

Indeed, since a;+1 € A and W(a;) € B, we have y(a;41) < t(a;4+1) and
v(W{a;)) > «(W(a;)). Therefore, there are two cases. The first one is when
@;+1 is obtained from W(a;) by merging blocks with indices ¢«(W(a;)) — 1 and
t(W{(a;)), in which case y(ai+1) = ¢(W(a;)) — 1. The second case is when a; 41
is obtained from W (a;) by merging blocks with indices j — 1 and j, such that
j < (W {(a;)), and the obtained block is larger than m; and contains at least one
copy of 7y, in which case v(a;) = § — 1 < ¢(W(a;)). Note that we are using the
fact that a; # a;4; by ruling out the possibility that a;; is obtained from W (a;)
by merging the blocks indexed «(W(a;)) and ¢«(W(a;)) + 1.

Since, as observed before, v(a;) = ¢+(W(a;)), we obtain v(a;) > v(a;+1) and
hence a contradiction y(ag) > v(a1) > ... > v(a;) = ¥(ap). Thus, by Theorem
2.5, the simplicial complex dy is contractible.

(b) Let = be the vertex of ) which is labeled by the composition {72 + -« +
7;,1]. Consider the following two subspaces of dy, T = {closed stars, (z)} and
Q = 0y “{open star; (z)}. Clearly T is contractible and dy = T U Q.

Let us show that @ is contractible. Consider the matching W on 4, which is
defined completely analogously to the one in the first part of this proof. It is easy
to see that the matching is again complete. The acyclicity of W follows from the
argument in the first part.

Then Jy is homotopy equivalent to the suspension of T'N @ = links, (). The
simple observation that links, (x) = d(r,, .. ,) finishes the proof. |

Shapiro and Welker have computed the homotopy type of dy for A = (k,17),
[10, Proposition 3.9, Corollary 3.10}, by using the previous work of Bjorner and
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Wachs, [3, Theorem 8.2, Corollary 8.4]. Here we prove a general theorem of
which A = (k™,17), for m > 2, is a special case. We shall also reprove the result
for the case A = (k,1").

First we need some terminology. Number partitions of n are partially ordered
by refinement: for A,y n, A = (m1,...,mn), # = (M1, -, M), we say that
A > p if there exists a collection of disjoint sets Iy, ..., I,y € {1,...,1(A}}, such
that U 1, = {1,...,1())} and Yer, T = Mk, for k= 1,...,1(u). Again,
the convention of the ordering is dictated by the partial order on the set of
compositions, which in turn followed the pattern of cell inclusions.

Cutting Condition.

We say that a pair (A, my), where A\ = (my,...,m(y)) is a number partition of
n, satisfies the Cutting Condition, if, whenever p = (11,...,7My,)) is another
number partition of n, such that A > u, and for some i € {1,...,1{(n)} and some

nonempty set I C {2,...,I(\)}, we have equality n; = m + )_;.; 7;, then we
have \ > 1, where i = (m,.. .,niﬁl,ﬁl,zje‘, T it Ly - - - » i) )

Note that if (A, m1) satisfies the cutting condition, then the block 7 is not nec-
essarily the largest one. For example, ((6,4, 4,2, 1), 1) satisfies the cutting condi-
tion while ((6,4,4,2,1),6) does not: (6,4,4,2,1) > (8,6,2,1), but (6,4,4,2,1) 2
(6,6,2,2,1).

THEOREM 3.2: Let A = (my,..., 7)) be a number partition, such that (A, 1)
satisfies the cutting condition.

(a) If my is involved in a trivial resonance, then &, is contractible, and hence
s0 is ﬁyp\’;

(b) If my # m;, for i =2,...,1(\), then there exists an acyclic matching on D)
such that the nontrivial critical simplices are exactly the ones indexed by the
compositions a = (o, . .., qyq)), where Q) = 1, and o F T+ Y
forall1 <i<lla)—1and I C{2,...,l{\)} (I may be empty).

jer T

Proof: We can define a matching on D, which is completely analogous to the one
defined in the proof of the Stabilization Theorem 3.1(a). A word by word check
of the proof of the acyclicity of the matching reveals that the same argument is
still valid in our case.

If my 5 m;, for i = 2,...,1(A), the nontrivial critical simplices are the simplices
corresponding to the compositions described in (b) above, becanse they are the
only ones where, on the one hand, 7; cannot be merged with the next block to
the right, and, on the other hand, it is impossible to cut off a block 7} from some
other block. |



198 D. N. KOZLOV Isr. J. Math.

Theorem 3.1(a) follows from Theorem 3.2(a). However, since the proofs are
essentially identical, we prefer to prove the structural Stabilization Theorem 3.1
first, and then point out that the argument is actually valid for the combinato-
rially more technical Theorem 3.2. The next result shows that Theorem 3.2 is
strictly more general than Theorem 3.1.

COROLLARY 3.3: Let

A= (RO, R RS RS,
N~ a— | A A N
my me me+1
for some positive integers k,my,...,myy1, and ¢; > -+ > ¢, such that k > 2,
e —

and my > 2. Then dy, and hence also Hyp?, is contractible.

Proof: Tt is enough to check that (A, k') satisfies the cutting condition, since
then, by Theorem 3.2(a), the simplicial complex &y is contractible.

Assume g = (1,..., M), A > p, and 5, = Z:zlrikci + reqq for r; < my,
rq > 1, and either ry > 2 or r; > 0 for some ¢ € {2,...,t+ 1}. Since A > y, one
can write n; = S ._, 7i k% + 1414, for j = 1,...,1(), so that Zj(ﬂ Tij = My,
fori =1,...,t +1. If r; 4 > 1, then we are done. Otherwise, as 7, > k1,
we can find 7 < ryq, for i = 2,...,t + 1, such that Z;t:z 7k + Fryp = kL.
This means that there exist numbers #; ; such that n; = Z;?:l 73 jk% + T4 4, for
7=1,...,1(p), Z;(_ﬂfz] =m, fori=1,...,t+1, and 71 4 > 1. 1

There are many other pairs satisfying the cutting condition, for example:
o (P, md, ... wqm 17),m), for m > 300 qimis
o ((kmy,... km,17),1), for 1 <r <k-1.
Often the matching produced in Theorem 3.2(b) can be extended so as to yield
complete information on the homology groups of the simplicial complex d,. In
the next proposition we demonstrate this by a couplei of examples.

PROPOSITION 3.4:
(a) [10, Proposition 3.9, Corollary 3.10]: For A = (k,1%), where k > 2, ¢ > 0,
we have
§2m=1_ ift = km, for some m € Z;
Oy = { 52 ift =km+1, for somem € Z;
point,  otherwise.

(b) For A = (k,2,1%), where k > 3, we have
Zy D Zzm-1), ift+2=km, for some m € Z;

H,6)) =14 Ly ®Leamy,  ift+1=km, for some m € Z;
Zyy, otherwise.
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Recall that H/yp\’; & susp? ), hence (a) and (b) above yield the corresponding
information about the stratum HypY.

Note: In this paper, all homology groups are reduced and with integer coeffi-
cients. We also use the notation Z; to denote a direct summand Z in the ith
reduced homology group. For example, the reduced homology groups of the torus
S x S would be written as Z(1y b Z1y b ZLa).-

Proof of Proposition 3.4: (a) Let us extend the matching given in the proof
of Theorem 3.2(b) (equivalently, in the proof of Stabilization Theorem 3.1) as
follows. If @ € D) indexes a nontrivial critical simplex and

a#[Lk—11,..,k=11k, a#[L,k-1,...,1,k—1,k,

then
a=[Lk-1,...,1,k-1,p,q,..., k],

2m

where m > 0, p< k—1, and, either p>2o0rq <k —2.
If p > 2, we define

W(a)=[1,k-1,....,,k~1,1,p—1,q,...,k]

-

2m

If p=1and q <k —2, we have a = W(b) for

b=[L,k=1,...,1k~L1+q,... kL

-~

2m

This will complement the existing matching so that the only remaining nontrivial
critical simplices are
[\l,k— Li,...,k—=1,1k],ift=km+1,and [1,k—1,...,1,k~ 1,k], if t = km.

TV
2m 2m

It only remains to check that W is still acyclic. Since the newly matched
simplices form an upper ideal of D), it is enough to check the acyclicity condition
involving only them. Let ao,...,ay € Dy be such that ap = ay, a; # aiy1,

ai:uak_17"'711k_1api7qi,--"k]7

2mi

k—1>p; > 2, and

W(ai)=[1,]6—1,...,1,]6—1,1,]),-—l,qi,...,k]>ai+1,

-

—

2m;
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fori=0,...,f -1

Then, by what we have just said, a;41 is obtained from W (a;) by merging the
blocks indexed j and j+ 1, for j > 2m; + 2. If j > 2m; + 3, or j = 2m,; + 2, but
p; — 1+ ¢; # k— 1, we get into a contradiction with the choice of a;’s. Hence we
must have j = 2m; + 2 and p; — 1+ ¢; = k — 1, which implies that m; < m;41,
and we get a contradiction mg < m; <--- < my = my.

(b) The case A = (k,2,1%) is very similar. The only difference is that there is
an additional nontrivial critical t-simplex

2,1,...,1,&
N
t

(according to the idea of the previous matching, one would want to break 2
into 1,1, which is impossible). Thus, from the previous argument we derive
the conclusion, unless the nontrivial critical cells (for the case t + 2 = km and
t +1 = km) are in the neighboring dimensions. These cases are (4,2,1,1),
(4,2,1,1,1), (3,2,1%), and (3,2,1°%); they can be verified directly. Observe that
since for some cases we obtain a homotopy equivalence of d, with a CW complex
with 2 cells in dimensions higher than 0, we cannot in general determine the
homotopy type of 8. |

Note that since we are not using [3, Theorem 8.2, Corollary 8.4] for our proof
of Proposition 3.4(a), we obtain the alternative proof of these results of Bjorner
and Wachs on the homotopy type of the lattice of intervals generated by all
(k — 1)-element subsets of {1,...,n —1}.

3.2. IDENTIFICATIONS CAUSED BY ADDITIONAL RESONANCES. Let us intro-
duce one more piece of terminology. Recall that, given a composition, its reso-
nances are simply linear dependencies of its parts with coefficients £1,0, which
we viewed as a pair of the subsets of the index set: those parts which get a co-
efficient 1 and those which get a coefficient -1. We say that a resonance r can
be derived from a set of other resonances S if it follows from them as a linear
equation. That is, if the entries in an integer vector satisfy the equations from
the set .9, then they also satisfy the equation r. A standard linear-algebraic way
to see it is to pass to the dual vector space and view resonances there as vectors
with £1, 0 coordinates. Then r can be derived from S if and only if it lies on the
linear span of vectors from S. If the resonance r cannot be derived from the set
of resonances S, we say that r is independent of S.

Having this picture in mind, one can talk about adding independent resonances
to the already existing set. If one could in general describe what happens to the
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topology of the corresponding stratum, then one would have a general algorithm
to compute the algebraic invariant of m Unfortunately, the combinatorics of
the situation seems prohibitively complex.

In this subsection we take a small step on this road. Let us start with a simple
observation.

PRroPOSITION 3.5: Let @ = [ay,...,a¢) and & = [@y,...,84], t > 3, be two
compositions such that the set of resonances of & is equal to the union of the
set of resonances of a with a new resonance &y + -+ + & = Q41 + -+ + Qy,
for some 1 < k < t-1. Let A = (eq,...,) and A= (61,...,04), then
fl*(é;\) = H,(5,) & Z(), correspondingly I~{*(H/yp\’§) = g’*(ﬁy—p\f) ® Z3).

Note: The condition on the sets of resonances of the compositions & and & in
the formulation of Theorem 3.5 is much stronger that just requiring that the
resonance Zle &y = 23: k+1 @ is independent of the resonances of . It means
that this is the only resonance added. For example, it implies the following: «
has no resonance of the type ), ;i = 3 jes X for nonempty sets I and .J,
such that simultaneously I C {1,...,k}and J C {k+1,...,t}.

Proof: Clearly, d5 is obtained from &, by gluing together two vertices indexed by
the compositions [y +- - -+ ag, @py1+- - +ag] and {1+ -+ oy, a1+ Fag).
Since the topological space 8y is connected, when I(A)} > 3, the result follows from
the homology long exact sequence of a pair. 1

Next we consider the case when the added resonance does not include all the
blocks, but is still the only resonance added.

SECOND STABILIZATION THEOREM 3.6: Let [a1,...,0p, 81,58 Y1y- -y V)
be a composition of type A, such that p > 1, ¢ > 2, r > 1, whose set of res-
onances includes

(3.1) Bit -+ By=m+- o+

Assume there exists [dl,...,dp,ﬁl, . ..,Bq,'”yl, ..<»%], & composition of type
A, such that it has exactly the same resonances as \, except for (3.1 ) (in partic-
ular, (3.1) is independent of the other resonances of ). Assume also that the
block v = B+ -+ By + Y1+ -+ + 7, is strongly independent in (ay, ..., ap, 7).

Then there exists a long exact sequence

.....
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If, furthermore, B, and B are independent in ), then d; = 0, and hence FI,-(&A)
can be found by solving the corresponding extension problem. In particular, if
Hi_3(d(ay.....a,)) is free then Hy(6)) = Hi(d5) ® Hi—3(d(a,...,p))-

Note 1: The corresponding information about Hyp’ can be derived via the
formula Hyp,\ = susp? 6.

Note 2: The case ¢ > 1, r > 2 is symmetric to the case considered in Theo-
rem 3.6, hence the same conclusion can be reached with §’s and 4’s interchanged.
If ¢ = r = 1, then the simplicial complex ) is contractible by Stabilization The-
orem 3.1.

Proof: Let A (resp. ;{) be the simplicial subcomplex of é5 consisting of the
simplices which are labeled by those compositions, where the sets of blocks
{Bl,...,fiq} and {%1,...,%} of A are summed up and the sum of Bl,...,fiq
is either in the same block as the sum of 1,..., %, or to the left (resp. right) of
it. Clearly, B=A4nN A is the simplicial subcomplex of 05, where all the blocks
Bl, ,Bq, A1, -+ -, are summed up, and AU A is the 81mpllclal subcomplex of
d5, where the sets of blocks {B1,... ,ﬂq} and {#1,...,%} of X are summed up.

There is a simplicial map 5 — J\ which corresponds to imposing a new
resonance Y ._; B = Z;=1 ¥; on A Topologically, it corresponds to gluing the
subcomplexes A and A together in the natural way. There is a simplicial bi-
jection ¢ between A and A, which interchanges the sums $°7_, 3; and D1 Vi
This bijection fixes B and therefore we can glue A together with A inside o5
by pointwise identifying those simplices which are mapped to each other by ¢.
Gluing together two points in the proof of Proposition 3.5 is a simple special case
of this procedure.

Let A denote the simplicial subcomplex of dy consisting of simplices indexed
by compositions where the sets {31,...,8,} and {v1,...,7,} are summed up.
We have A =84, .0, 54), Where 8= p1 +---+ B, =m + -+ The block
B must be independent in (au,...,ap, 5, 5).

Indeed, since v is strongly independent in (a1, ..., ap,7), there is no resonance
of the type 3 ;c; i + B+ 8= Z]EJ a;. The only other option for 8 not to be
independent would be to have a resonance of the type Zie jo+B=3 e %
But then A would have resonances ) ;. a; + S Bi= Yjesojand 3o ait+
Y1V = 2 jes@;j- These two resonances imply (3.1), which contradicts the
existence of A.

So 8 is independent, and hence, by Stabilization Theorem 3.1(a}, A is con-
tractible. Furthermore, it is clear that A, A and A are all isomorphic, hence they



Vol. 132, 2002 TOPOLOGY OF SPACES OF HYPERBOLIC POLYNOMIALS 203

are all contractible.

By the very nature of the gluing map d5 — d, we have a simplicial isomor-
phism of pairs (d5, AU /I) 2 (§y, A); for the general criteria see Proposition 4.1.
Combining this observation with a long exact sequence

oo — Hy(A) — H;(6)) — Hy(6x, A) — H;_(A) — -,

we conclude that H;(8y) = (6 N A) = H; (65 5, AU A). We also have a long exact
sequence

. — Hi(AU A) ——>H( ) — H(éA,AUA) — H,_ 1(AUA) 4oy
Since both A and A are contractible, we have
Hi(AuA)= H_y(An &) = Hi_y(B).

Clearly B = 6(q,,...,a,,y), and, since v is strongly independent in (a1, ..., o, ),
we know that B = susp{é(s,,....a,)), by Stabilization Theorem 3.1(b).

Let us now see that the homology map d; : H;(AU A) — H;(d5), induced by
the inclusion map, is trivial, under the condition that Bl and Bg are independent
in A. Let K be the simplicial subcomplex of & 5, consisting of the simplices indexed
by those compositions, where $: is either in the same block as 32 or in the block
with a smaller index than the block containing /3’2.

Clearly, K % d(5,, . 5,.51.....3,7,...,7.)» Where the set of resonances of the num-
ber partition A = (ai,...,0p,B1,..-,8 ¥1,-.-,7r) is obtained from the set of
resonances of A by adding the resonance 3; = B, and everything which it implies
together with the already existing resonances.

Since Bl and Bz are independent in X Bi=p5is independent in X, hence, by
Stabilization Theorem 3.1(a), K is contractible. On the other hand, K O A U,Z,
so the inclusion map can be factored A U A i) K Z—2> d5 and hence d, factors as

~ ~ i~ 2 ~
well H, (AU A) 3 H(K) = H.(d5). Since the middle term is 0, we conclude
that d; = 0. The last conclusion of the theorem now follows. [ |

3.3. NONCANONICITY OF MAPS BETWEEN RESONANCES. Recall that if Res A =
Res p, then 65 ~ é,. Therefore, the simplicial complex d ges» is well-defined.

Whenever we have number partitions A > y, there is an inclusion map i(u, A) :
d, — 6, which induces i(p, A), : ﬁ*(éu) - I~{*(6,\), and hence obviously (g, A). :
H (OResp) — H, (ORresr). We conjecture, however, that i(u,A), depends on
more than just the sets Res A and Resp, i.e., one cannot define a unique map
i(Res i1, Res M) ,. More precisely:
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CONJECTURE 3.7: There exist number partitions A, y, fi, such that
(D) A>p, A> 0
(2) Resp = Resji;
(3) the homomorphisms of homology groups, i(, A). and i(fi, A)«, induced by
the respective inclusion maps are nonisomorphic.

For every n > 1, we define a partial order on the set {Res A] [(A) = n} by saying
that Res A > Res )\ if and only if for some compositions «, resp. &, of type A,
resp. ), the set of resonances of & is a subset of the set of resonances of a. In such
a case, a choice of the compositions « and & induces a map v(&, a) : 65 — 6x,
and further v(&, ). fI,,((S;\) — H,(8y).

CONJECTURE 3.8: The isomorphism type of the map (&, o). depends not only
on the actual number partitions A and A, rather than their sets of resonances,
but even on the choice of the pair of compositions a and .

Note: It is easy to come up with examples of number partitions X and A for which
there are such pairs of compositions, which are nonisomorphic under the group of
symmetries of the blocks of A. For example, A = (a,b,¢,d,d), A = (z,z,z,v,y),
a; = az = la,b,¢,d,d], a1 = [z,2,2,y,9], and ay = [z,y,y,,z]; the pairs
(61, 01) and (&2, a2) are nonisomorphic.

We would like to emphasize that in order to obtain an algorithm for computing
the homology groups of the simplicial complexes dgesr, it is almost certainly
essential to understand the maps #(y, A), and v(&, @), which, as Conjectures 3.7
and 3.8 seem to suggest, may be a rather nontrivial task.

4. Remaining questions and future perspectives

We think that understanding the maps i(u, A), and y(¢(}, A)). described in Sub-
section 3.3, combined with the type of arguments used in the proof of Theo-
rem 3.6, would lead to further progress in the computation of the homology
groups of the simplicial complexes 6.

The following observation (the proof is left to the reader) is of use when one
wants to compare two long exact sequences of a pair, as was done in Theorem 3.6.
PROPOSITION 4.1: Let (my,...,mx) = A > p and (F1,..., 7)) = A > jbe
number partitions, such that [(\) = () and [() = l{j1). We have a simplicial
isomorphism of pairs (8y,0,) and (85,05) induced by m; — 7;, for 1 < i < I(A)
(in which case, of course, H.(8x,4,)) = H.(d5,9z)), if and only if the following
conditions are satisfied:
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(1) 4 is the image of §,, under the map induced by m; — 7;;

(2) if there is a resonance ) ;. 7; = ) .. ;T; in A, then either we have

jed
1 (Zﬂ'iazﬂjvrflw . '77rft)7
iel Jj€J

where {f1,..., fe} = {1,...,1(A)} N(IUJ), or there is a resonance ), T;
=Djes i in X 5
(3) the same as (2) above, with X and A, as well as p and ji, interchanged.

EXAMPLE OF A COMPUTATION. Let A= (3,2,2,1),1=(3,3,2), A = (5,3,3,1),
and ji = (5,4, 3); the conditions of Proposition 4.1 are satisfied. Clearly, d(3 3 2)
is contractible. By Stabilization Theorem 3.1(a) and Proposition 3.4 we have
H, (0(5,3,3,1)) = Z(1), and, by direct observation, §(5 4,3) is homeomorphic to St
Therefore we conclude that

ﬁ*(5(3,2,2,1)) = ﬁ*(5(3,2,2,1), 0(3,3,2)) = ﬁ*(5(5,3,3,1), 0(5,4,3)) = L2y ® Ly,

where the last equality follows from the fact that the circle é5 4,3y does not pass
through the vertex indexed by the composition (6, 6), hence the homomorphism
of the homology groups i, : ﬁ1(6(5’4’3)) — }~Il(5(5,3,3’1)), induced by inclusion, is
a zero map.
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