
I S R A E L  J O U R N A L  O F  M A T H E M A T I C S  132 (2002), 189-206 

TOPOLOGY OF SPACES OF HYPERBOLIC POLYNOMIALS 
AND COMBINATORICS OF RESONANCES 

BY 

DMITRY N. KOZLOV* 

Department of Mathematics, Royal Institute of Technology 
S-100 ~ ,  Stockholm, Sweden 

e-mail: kozlov@math.ethz.ch, kozlov@math.kth.se 

A B S T R A C T  

In this paper we study the topology of the strata, indexed by number 
partitions A, in the natural stratification of the space of monic hyperbolic 
polynomials of degree n. We prove stabilization theorems for removing 
an independent block or an independent relation in A. We also prove 
contractibility of the one-point compactifications of the strata indexed 
by a large class of number partitions, including A = (k m, l r ) ,  for m _> 
2. Furthermore, we study the maps between the homology groups of 
the strata, induced by imposing additional relations (resonances) on the 
number partition A, or by merging some of the blocks of A. 

1. I n t r o d u c t i o n  

The  space of monic  hyperbol ic  po lynomia l s  of degree n is na tu ra l ly  s t ra t i f ied  by 

fixing the  mul t ip l ic i t ies  of the  roots .  In  this  p a p e r  we s tudy  the  topo logy  of these 

s t r a t a .  The  topologica l  aspects  of the  spaces of po lynomia l s  wi th  mul t ip le  roo ts  

have been  extens ively  s tudied,  see e.q., [1, 2, 10, 11, 13, 14]. As the  general  

mo t iva t ion  we would like to ment ion  the wide ly-branching  p r o g r a m  of s tudy ing  

the  topologica l  p roper t ies  of cer ta in  subsets  of some fixed funct ion space,  namely  

of the  spaces of funct ions wi th  s ingular i t ies  of some fixed t ype  (also known as 

discriminants). 
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Here we study the discriminants in the function spaces of all hyperbolic poly- 

nomial maps from R n to Rn, but there is a very large number of other important 

examples: 

�9 spaces of knots, i.e., nonsingular imbeddings S 1 ----+ S 3, e.g., see [12]; 

�9 spaces of complex polynomial maps, or, more generally, of systems of poly- 

nomials, see for example [13, Theorem 4, p. 126], and [4], for a connection 

between these two cases; 

�9 spaces of nonsingular deformations of differentiable manifolds; 

and many others. V. Vassiliev's book [13] provides a very extensive overview of 

the developments and the current state of the art in this area. 

The case of hyperbolic polynomials has been considered before, most impor- 

tantly in [10], where a simplicial complex of a combinatorial nature 5~ was de- 

scribed, such that the double suspension of ~ is homeomorphic to Hyp~. Here 

Hyp~ is a one-point compactification of the strata of the space of all monic hy- 

perbolic polynomials of degree n, which is indexed by the number partition A; 

the exact definition is given in Subsection 2.1. 

In this paper we are working further with this combinatorial model. By using 

the techniques of the Discrete Morse Theory as well as d i re9 algebro-topological 

arguments, we are able to compute homology_ groups of Hyp~ and even, in some 

cases, determine the homotopy type of Hyp~, for several previously unknown 

classes of A. 

We would like to emphasize the combinatorial aspect at this point. The 

methods which we use are combinatorial. In fact, we are working exclusively 

with posets of compositions, which can be considered as objects of internal com- 

binatorial interest, even though their appearance was mainly motivated by the 

topological questions about Hyp~. 

Boris Shapiro has suggested to me in a private conversation, [9], that  there 

might exist a general algorithm for computing the homology groups (or even 

better, the homotopy type) of Hyp~ for general A. The results of this paper 

along with the idea of the resonance category, introduced in [15], may be used as 

the first step on this path. 

Here is a short summary of the contents. 

S e c t i o n  2. Notations and terminology are introduced. The description of the 

Shapiro-Welker combinatorial model for Hyp~ is given. The relevant results of 

Discrete Morse Theory are outlined for later use. 

Se c t i on  3. Here the bulk of our results is concentrated. In Subsection 3.1, we 

prove the First Stabilization Theorem which allows one to remove an indepen- 
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dent block from a number parti t ion A. Furthermore, Theorem 3.2 describes, in 

particular, a large class of partitions A (to which, for example, ,~ = (k m, 1~), 

m _> 2, belongs), for which Hyp~ is contractible. 

In Subsection 3.2, we prove the Second Stabilization Theorem which allows 

one in some situations to remove a relation from a partition. We also study the 

maps between simplicial complexes 5~ which are induced by imposing additional 

relations (resonances) on the number parti t ion A, or by merging some of the 

blocks of A. 

S e c t i o n  4. We describe some remaining open questions and perspective 

developments. 

ACKNOWLEDGEMENT: I am grateful to Boris Shapiro for educational discus- 

sions and for inspiring this research, and to Eva-Maria Feichtner for the careful 

proofreading of the early versions of the paper. I would also like to thank the ref- 

eree for helpful comments which led to substantial improvements throughout the 

paper. Finally, I acknowledge the support  of the Forschungsinstitut fiir Math- 
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2. M e t h o d s  

2.1. COMPOSITIONS, NUMBER PARTITIONS, AND THE INDEXING OF STRATA. 

An ordered tuple of positive integers A = [rr l , . . . ,  7rt] is called a c o m p o s i t i o n ,  

or sometimes a c o m p o s i t i o n  o f  n, where n = 7rl + . . .  + 7rt. When this tuple is 

taken unordered, A is called a n u m b e r  p a r t i t i o n  of n, we write A = (7rl , . . . ,  7rt), 

and A ~- n. For number partitions, we also use the power notation: 

(n~n,...,l~1)=(n,...,n,...,1,...,1). 
a n  ~ 1  

Both for number partitions and compositions, we call ~ri's the b locks  of A. The 

l e n g t h  of A is the number of blocks and is denoted l(A). Given a composition of 

n, its t y p e  is the number partition of n, which is obtained from the composition 

by forgetting the order of the blocks (in the text we often reflect it by changing 

the square brackets to round ones). 

Let Hyp n C R ~ be the space of all monic hyperbolic polynomials (a polynomial 

is called hyperbolic when all of its roots, and hence its coefficients, are real 

numbers), and Hyp n its one-point compactification. There is a standard cell 

decomposition of Hyp n which we now proceed to describe. For a composition 



192 D.N. KOZLOV Isr. J. Math. 

[ a l , . . . ,  at] of n, we denote by H y p ~  1 ..... ~1 the topological space of all hyperbolic 

polynomials (x - r l )  ~ . . .  (x - rt) ~' such that  r l  < . . .  < rt. Given a number 

parti t ion A of n, we denote by Hyp~ the closure (in Hyp n) of the union of all 

H cells yp[~  ..... ~] ,  where the composition [ a l , . . . ,  at] is of type A. We denote the 

one-point compactification of Hyp~ by Hyp~. 

2.2. THE SHAPIRO-WELKER MODEL. The set of all compositions of n is par- 

tially ordered by refinement. Namely, let x = [c~1, �9 �9 az(z)] and y = [/31 . . . .  , ~31(y)] 

be two compositions of n; we say that  x _< y if and only i f a j  = ~ij_l+l +" �9 -+13/~, 

for 1 < j < l(x) ,  and s o m e 0 = i 0  < il < . . .  < iz(x) = l(y).  Since/3i > 0, for 

i -- 1 , . . .  , /(y),  the indices i l , . . . ,  il(x)-i are uniquely defined. In this situation, 

we set g(y,x,13/) = j if and only if i j _ l  + 1 < i < ij .  

Given a number parti t ion A = (7rl, . . .  ,~rt) of n, we define Dx to be the poset 

consisting of all compositions of n which are less than or equal to some compo- 

sition of n of type A. D~ has a minimal element, the composition consisting of 

just the number n, and it is easy to see that  D~ U {i} is a lattice, where 1 is an 

adjoint maximal element. 

Since the lower intervals of D~ are boolean algebras, and D~ itself is meet- 

semilattice, there exists a unique simplicial complex, which we denote by 5~, 

such that  D~ is the face poset of 5~, i.e., the elements of D~ and the simplices of 

5x are in bijection, and the partial order relation on Dx corresponds under this 

bijection to the inclusions of simplices of 5~. In particular, when/(A) = 1, we 

have 5~ = q}. 

This bijection is the reason why we chose an order convention on the com- 

positions as opposed to the customary one in combinatorics: we want to have 

an order-preserving bijection, not an order-reversing one. 

The simplicial complex 5~ is important  for the following reason. 

THEOREM 2.1 ([10, Theorem 3.5(a)]): Let  A be a number  pa1....rtition of  n. Then 

the one-point compactif ication o f  the s t ra ta  indexed by A, Hyp~, is homeomorphic  

to the double suspension of  the simplicial complex  ~ .  

2.3. TERMINOLOGY OF RESONANCES. It  turns out that  5~ depends only on 

the set of various equalities of sums of different parts of ~ (resonances), not on 

the exact numerical values of the parts of A. This can be formalized as follows. 

Definition 2.2: (a) Given a composition of n, a = [~1,. . . ,Ih(~)],  a r e s o n a n c e  

of a is an unordered pair ( { i l , . - . ,  ik}, {ji . . . .  , j m } )  of nonempty disjoint subsets 
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of {1, . . . , / (c~)},  such tha t  

(2.1) 7ril + " "  + lrik = ~rjl + " "  + 7ljm. 

We denote the set of all resonances of a by Res c~. 

(b) Given a number  par t i t ion A ~- n, we denote by Res A the set of all Res c~, 

such tha t  a has type  A. 

For every positive integer k, the permuta t ion  action of Sk on [k] induces an 

Sk-action on the set of all composit ions of length k, and hence also on the set 

{Resc~ I a is a composi t ion of length k}. The orbits are indexed by number  

partit ions, and Res A is the orbit of this action indexed by A. For example, 

Res(8, 3, 3, 3, 1) = Res(7, 5, 4, 4, 4). 

The notion of a resonance is imp ortant,~because if A and A have the same set 

of resonances, then the spaces Hyp~ and Hyp~ are homeomorphic.  

We will abuse the language and call an equality of the form (2.1) itself a res- 

onance. We will also say tha t  c~ (or A) has this resonance. Where  it does not 

lead to confusion, we shall often say "the set of resonances of the number  par- 

t i t ion A", instead of saying "the set of resonances of some composit ion of type 

A". If  in (2.1), k = m = 1, then the resonance is called t r iv ia l ,  otherwise it is 

called n o n t r i v i a l .  The resonance 7ril + . . .  + 7rik = 7~jl + . . .  + 7~jm is said t o  

i nvo lve  blocks 7ri~,... ,  ~ik, 7~j~,..., ~rjm; correspondingly, these blocks are said 

t o  b e  i n v o l v e d  in this resonance. 

A block 7I" i of a composit ion is called i n d e p e n d e n t  if, whenever 7~il + ' "  "+~rik = 

~rj, + . . .  + 7~jm and il = i, there exists 1 _< q _< m such that  there is a trivial 

resonance 7ri = ~rjq. If  a block is not involved in any resonance then it is called 

strongly independent. 
Clearly, given a block in a number  part i t ion A, the corresponding block is 

independent,  resp. strongly independent,  in all composit ions of type A if and 

only if it is independent,  resp. strongly independent,  in any one such composition. 

Therefore, we have a well-defined notion for a block of a number  par t i t ion to be 

independent,  resp. strongly independent.  

If  A = ( 7 1 , 7 1 1 , . . .  , 71"l(A)_l) is a number  par t i t ion such tha t  7r is s trongly inde- 

pendent,  then for any x E D~ there exists a number  1 _< p:~(x, re) <_ l ( x )  such 

that ,  whenever y _> x and y is of type A, we have p;~(x, zr) = g ( y ,  x ,  7c), i.e., this 

number  does not depend on the choice of y. 

More generally, if 7r is independent,  but  not necessarily strongly independent:  

say the trivial resonances in which it is involved are zr = 7rl . . . .  , zr = 7rk, then 

the multiset { g ( y , x ,  zri)l i = 1 , . . . , k }  U { g ( y , x , z : ) }  does not depend on the 



194 D.N. KOZLOV Isr. J. Math. 

choice of the composition y of type )~, such that y >_ x. In such a situation, 

if x = [c~1,...,c~z(x)], we say that aj con ta in s  t h e  b lock  7r, if j belongs to 

the multiset {g(y,x, 7ri)] i = 1 , . . . , k }  U {g(y,x, rc)}. We refer to the number of 

occurrences of j in this multiset as the number of copies of 7r contained in a j .  

2.4. DISCRETE MORSE THEORY. For a regular CW complex 5, we denote by 

P(5) its face poset, the empty face included as a minimal element. Vice versa, 

for a poser P, 5(P) denotes the simplicial complex which is the nerve (order 

complex) of P; see [7, 8] for the first appearances of the nerve of a category. 

Recall also the following terminology. 

Definition 2.3: Let X be a regular CW complex. Assume that  F1 and F2 are 

cells of X such that F2 is a maximal cell which contains F1, and there is no 

other maximal cell containing F1. A col lapse  is the replacement of X with 

X \ { F  I F1 C F}. A collapse is called e l e m e n t a r y  if dimF1 + 1 = dim F2. 

Clearly, a collapse is a strong deformation retract, hence it preserves the 

homotopy type of the space. 

Let 5 be a regular CW complex. A m a t c h i n g  W on P = P(5) (cf. [5, Defini- 

tion 9.1]) is a set of disjoint pairs (a, T) such that T, a E P,  T ~- a, ("5-" denotes 

the covering relation). We set 

= {~ E P I there exists r such that  (ct, v) E W}, 

= {r E P t there exists a such that (a, T) E W}. 

If (a, r)  E W then we set W(a) = r. 

Definition 2.4 (cf. [5, Definition 9.2]): A matching is called acycl ic  if it is im- 

possible to find a sequence a 0 , . . . ,  at E ~ such that ao r a l ,  or0 -- at and 

W(ai)  ~- a~+l for 0 < i < t -  1. 

Note that if a matching is acyclic, then not all 0-cells are matched with 1-cells. 

A cell a is called cr i t ica l  if either it is the empty cell, or it is a 0-cell matched 

with the empty cell, or a ~ ~ U ~ ;  in the latter case a is called n o n t r i v i a l  

cr i t ical .  Let mi (W) denote the number of critical/-cells. 

Note: Alternatively, we could just omit the empty cell from the cell complex. 

However, we choose to keep it, and have a somewhat more complicated definition 

of the critical ceils, first, since the empty cell is natural in our applications, and 

second, since the formulation of the Theorem 2.5 is somewhat smoother in that  

version, as a complete matching is a standard object in combinatorics. 
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We need the following result; see also [6, Theorem 3.2], [5, Theorem 9.3], and 

[5, Corollary 3.5]. 

THEOREM 2.5: Let 5 be a regular C W  complex of dimension d, and let W be 

an acyclic matching on P(5). Then 5 is homotopy equivalent to a C W  complex 

5M, which has mi (W)  cells of dimension i. In particular, if  the acyclic matching 

is complete, then 5 is contractible. 

The basic idea of the proof  is tha t  the combinatorial  condition of acyclicity 

allows us to arrange the collapses in a sequence and perform them one after the 

other. 

3. Resu l t s  

3.1. APPLICATIONS OF DISCRETE MORSE THEORY. We begin by proving 

a theorem which allows one to remove an independent  block from a number  

parti t ion.  

FIRST STABILIZATION THEOREM 3.1: Let A = (71-1 , . . . ,  71-t) be a number partition 

of n, such that 7~ 1 is independent. 

(a) / f  ~-1 is not strongly independent, i.e., 7rl = 7ri, for some 2 < i < t, then 

the simplicial complex 5~, and therefore also the topological space Hyp~, 

is contractible. 

(b) Is on the other hand, zrl ~ 7ri, for all 2 < i < t, then 5~ is homotopy equiva- 
A 

lent to susp 5~, correspondingly Hyp~ ~_ susp Hyp n, where ~ = (7r2,. . . ,  7rt). 

Proos (a) For any a = [ a l , . . . ,  al(a) ] E D~ let t(a),  resp. ~(a),  be the smallest 

index of a block of a which is equal to 7rl, resp. larger than  7rl and containing at  

least one copy of ~rl, if such exists; otherwise put  ~(a), resp. 7(a) ,  equal to exp. 

Clearly at  least one of the numbers L(a) and 7(a)  is finite. Since t(a) r 7(a),  

the elements of D~ split into two disjoint sets: A = {a C D~ I t(a) > 7(a)} and 

B = {a e D~,[ t(a) < ~,(a)}. 

Consider the following matching W on D~. For 

a = [ a l , . . . , a t ( a ) ] ,  b = [/~l,-.-,/3Z(b)] e D~, 

a e A, b E B, we have (a, b) C W if and only if l(a) + 1 = / (b ) ,  and 

{ O~i ~ /~i~ 

a~(b) =/~(b) +/3~(b)+1; 
a i  ~ J~ i+ l~  

for i = 1 , . . . ,~ (b)  - 1; 

for i = ~(b) + 1 , . . . , l ( a ) .  
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Note that in such a case e(b) = 7(a) and t(b) <_ l(b) - 1. 
Given a E A, by the definition of W, there exists a uniquely defined b c B 

such that (a, b) E W; conversely, given b c B, one obtains a unique a such that 

(a, b) C W by breaking the block ~z(b) into the blocks ~rl, ~(b) -- ~rl (exactly in 

this order). 

It is clear that these procedures are inverses of each other, thus W is a well- 

defined matching. Furthermore, W is complete. Note that the empty simplex 

[/I" 1 + " ' "  § 7rt] is matched with the vertex [7rl, ~T2 + - ' '  + ~'t]. We have ~ = A 

and ~ = B. 

The topologically inclined reader may think of this matching as a set of 

elementary collapses. We shall now check that they in fact can be arranged 

in a sequence of collapses, by checking that W is an acyclic matching. Consider 

a sequence ao, . . . ,ak  C A, such that ao = ak, ai ~ ai+l and W(ai) ~ hi+l, for 

i = 0 , . . . ,  k - 1. The simple but crucial observation is that t(W(a~)) > ")'(hi+l). 

Indeed, since a~+l C A and W(ai) E B, we have 7(hi+l) < t(ai+l) and 

7(W(ai))  > t(W(ai)). Therefore, there are two eases. The first one is when 

a~+l is obtained from W(a~) by merging blocks with indices t(W(ai)) - 1 and 

t(W(ai)) ,  in which case 7(hi+l) = ~(W(ai)) - 1. The second case is when ai+l 

is obtained from W(ai) by merging blocks with indices j - 1 and j ,  such that  

j < t(W(ai)) ,  and the obtained block is larger than ~rl and contains at least one 

copy of 7rl, in which case 7(hi) = j - 1 < ~(W(ai)). Note that we are using the 

fact that  a i r  ai+l by ruling out the possibility that ai+l is obtained from W(ai) 
by merging the blocks indexed L(W(ai)) and t(W(ai)) § 1. 

Since, as observed before, 7(hi) = ~(W(ai)), we obtain 7(hi) > 7(hi+l) and 

hence a contradiction 7(a0) > 7(al)  > . . .  > 7(at) = 7(a0)- Thus, by Theorem 

2.5, the simplicial complex 5~ is contractible. 

(b) Let x be the vertex of 5~ which is labeled by the composition [7r2 + -..  + 

7rt, 7rl]. Consider the following two subspaees of 5~, T = {closed starh~ (x)} and 

Q = 5~ \ { o p e n  s t a r ~  (x)}. Clearly T is contractible and 5~ = T U Q. 

Let us show that Q is contractible. Consider the matching W on 8~ which is 

defined completely analogously to the one in the first part of this proof. It is easy 

to see that the matching is again complete. The acyclicity of W follows from the 

argument in the first part. 

Then 5~ is homotopy equivalent to the suspension of T n Q -- tinkh~ (x). The 

simple observation that link~ (x) = 6(~ 2 ..... ~) finishes the proof. | 

Shapiro and Welker have computed the homotopy type of 5x for A = (k, 1"), 

[10, Proposition 3.9, Corollary 3.10], by using the previous work of Bjhrner and 
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Wachs, [3, Theorem 8.2, Corollary 8.4]. Here we prove a general theorem of 

which A = (k m, l r ) ,  for m > 2, is a special case. We shall also reprove the result 

for the case A = (k, l r ) .  

First  we need some terminology. Number  part i t ions of n are part ial ly ordered 

by refinement: for A, It F- n, A = (7r i , . . . ,  7rl(x)), # = ( r / I , . - . ,  rll(,)), we say tha t  

A >_ it if there exists a collection of disjoint sets I 1 , . . . ,  It(u) C_ {1 , . . . , / (A)} ,  such 

that  wi=l' 't(u) Ii = {1, . . . . .  . , l (A)} a n d  ~ j e i k T r j  ~- r/k, for k = 1, , l (#) .  Again, 

the convention of the ordering is dictated by the part ial  order  on the set of 

compositions, which in turn  followed the pa t te rn  of cell inclusions. 

Cutting Condition. 
We say that a pair (A, ~rl), where A = (Tr t , . . . ,  zrl(x)) is a number partition of 

n, satisfies the Cutting Condition, if, whenever # = (r /1 , . . . , r / t ( , ) )  is another 

number  partition of n, such that A _> #, and for some i E {1 , . . .  , / (#)}  and some 

nonempty set I C_ {2 , . . . , / (A)} ,  we have equality r/~ = zrt + ~ j e l  7rj, then we 

have A > ft, where ft = (r/1,... ,  r)i_a, 7rl, Y'~je~" rrj, r/ i+l, . . . ,  ~l(u)). 

Note tha t  if (A, 7rl) satisfies the cut t ing condition, then the block 7rl is not  nec- 

essarily the largest one. For example,  ((6, 4, 4, 2, 1), 1) satisfies the cut t ing condi- 

t ion while ((6, 4, 4, 2, 1), 6) does not: (6, 4, 4, 2, 1) > (8, 6, 2, 1), bu t  (6, 4, 4, 2, 1) 2~ 

(6, 6, 2, 2, 1). 

THEOREM 3.2: Let A = (z r t , . . . ,  zrt(x)) be a number partition, such that (A, 71"1) 
satisfies the cutting condition. 

(a) I f  7rl is involved in a trivial resonance, then ~ is contractible, and hence 
A 

so is Hyp~. 

(b) IfZrl r 7ri, for i = 2 , . . . , / ( A ) ,  then there exists an acyclic matching on D~ 

such that the nontriviat m'itical simplices are exactly the ones indexed by the 

compositions a = (o~t , . . . ,  al(~)), where al(~) = Zrl, and ai  r 7rl + ~ j E I  7rj 

for alI 1 < i < l(a) - 1 and I C_ {2 , . . .  ,/(A)} (I may be empty). 

Proof: We can define a matching on D~ which is completely analogous to the one 

defined ill the proof  of the Stabilization Tlmorem 3.1(a). A word by word check 

of the proof  of the acyclicity of the matching reveals tha t  the same argument  is 

still valid in our case. 

If 7rl ~ 7ri, for i = 2 , . . . , / ( A ) ,  the nontrivial  critical simplices are the simplices 

corresponding to the composit ions described in (b) above, because they are the 

only ones where, on the one hand, 7rt cannot  be merged with the next  block to 

the right, and, on the other  hand, it is impossible to cut off a block zq from some 

other  block. | 
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Theorem 3.1(a) follows from Theorem 3.2(a). However, since the proofs are 

essentially identical, we prefer to prove the s t ructural  Stabilization Theorem 3.1 

first, and then point out tha t  the argument  is actually valid for the combinato-  

rially more technical Theorem 3.2. The  next  result shows tha t  Theorem 3.2 is 

strictly more general than  Theorem 3.1. 

COROLLARY 3.3: Let  

A = ( k C l , . . . , k C ~ , . . . , k C * , . . . , k C t , l , . . . , 1 ) ,  

m l  m t  m t + l  

for some posi t ive integers k, m l , . . . ,  mt+ld, and cl > " .  > ct, such that  k >>_ 2, 

and m l  >_ 2. Then 5~, and hence also Hyp~, is contractible. 

Proof: It  is enough to check tha t  (A, k cl) satisfies the cut t ing condition, since 

then, by Theorem 3.2(a), the simplicial complex 5~ is contractible. 
t 

Assume p = (~h , . - . ,  7h(~)), A > #, and 7]q = E i = l  ri kc~ + rt+l for ri ~ mi ,  

r l  > 1, and either r l  _> 2 or ri > 0 for some i E { 2 , . . . , t  + 1}. Since A > #, one 
t x--,l(~) r~ can write ~j = ~-~i=1 ri,j kc~ + rt+l,j ,  for j --- 1 , . . . ,  l(p),  so tha t  Z.,j=l ,3 = mi ,  

for i = 1 , . . . , t + l .  I f r l , q  _> 1, then we are done. Otherwise, as ~/q > k el, 
t we can find ri <_ ri,q, for i = 2 , . . . ,  t + 1, such tha t  Y~i=2 rikC~ + r t+l  = k ~-  

- t This means tha t  there exist numbers ri,j such tha t  ~j -= Y~i=l ri,j kc~ q-rt+l,j ,  for 

j = 1, /(#),  x-"l(~) - for i 1, ., t + 1, and r l , q  > 1. | �9 " " ,  Z . ~ j ~ I  r i , j  = m i ,  = �9 �9 

There  are many other  pairs satisfying the cut t ing condition, for example: 
m 

�9 ((zrP, 7r~ 1, " - ' ,  7rqmm, l r ) ,  7r), for ~r --> E i = I  qi~ri; 

�9 ( (kTr l , . . . ,  kzrt, l r ) ,  1), for 1 < r < k - 1. 

Often the matching produced in Theorem 3.2(b) can be extended so as to yield 

complete information on the homology groups of the simplicial complex 5~. In 

the next  proposit ion we demonst ra te  this by a couple of examples. 

PROPOSITION 3.4: 

(a) [10, Proposi t ion 3.9, Corollary 3.10]: For A = (k, l t ) ,  where k _> 2, t _> 0, 

we have 
S m - l ,  i f  t = k m ,  for some m E Z; 

5~ ~- S 2m, i f  t = k m  + 1, for some m E Z; 
point,  otherwise. 

(b) For A -- (k, 2, l t ) ,  where k _> 3, we have 

Z(t ~ Z ( 2 m _ l )  , i f  t + 2 = kin, for some m C Z; 
H,(5~) = Z(t) | Z(2m), i f t  + 1 = kin, for some m E Z; 

Z(t), otherwise. 
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A 

Recall that Hyp~ ~ susp 2 ~;~, henj.~e (a) and (b) above yield the corresponding 
information about the stratum Hyp~. 

Note: In this paper, all homology groups are reduced and with integer coeffi- 

cients. We also use the notation Z(i) to denote a direct summand Z in the ith 

reduced homology group. For example, the reduced homology groups of the torus 

S 1 x S 1 would be written as Z(1) | ZO) �9 Z(2). 

Proof of Proposition 3.4: (a) Let us extend the matching given in the proof 

of Theorem 3.2(b) (equivalently, in the proof of Stabilization Theorem 3.1) as 

follows. If a C Dx indexes a nontrivial critical simplex and 

a#[ 1 ,  k - l , l , . . . , k - l , l , k ] ,  a#[1 ,  k - 1 , . . . , 1 ,  k - l , k ] ,  

then 

a=[1,  k - l , . . . , 1 ,  k - l , p , q , . . . , k ] ,  

where m _> 0, p < k -  1, and, either p_> 2 or q < k -  2. 

If p >_ 2, we define 

W(a) = [1, k -  1 , . . . , 1 ,  k -  1 , 1 , p -  1 ,q , . . . , k ] .  

I f p = l a n d q < k - 2 ,  we have a =  W(b) for 

b=[1, k - l , . . . , 1 ,  k-l,l+q,...,k]., 

This will complement the existing matching so that the only remaining nontrivial 

critical simplices are 

~ , k -  1 , 1 , . . . , k -  1,1,k], i f t  = k m + l ,  and [ 1 , k -  1 , . . . , 1 ,  k -  1, k], i f t  = kin. 

2 m  2 m  

It only remains to check that W is still acyclic. Since the newly matched 

simplices form an upper ideal of D~, it is enough to check the acyclicity condition 

involving only them. Let ao, . . . ,  a I C Dx be such that ao = a.f, ai 7 ~ ai+l, 

ai = ~ l , k - 1 , . . . , 1 ,  k -  l, pi ,qi , . . . ,k] ,  

k -  1 _> Pi > 2, and 

W(ai) = [1, k -  1 , . . . , 1 ,  k -  1, 1 , p i -  1, q i , . . . , k ]  ~- ai+l, 

2'rrtl  
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for i = 0 , . . . ,  f -  1. 

Then, by what we have just said, ai+l is obtained from W ( a i )  by merging the 

blocks indexed j and j + 1, for j >> 2mi + 2. If j >_ 2mi + 3, or j = 2mi + 2, but 

Pi - 1 + qi r k - 1, we get into a contradiction with the choice of ai's. Hence we 

must have j ---- 2 m i  -]- 2 and Pi - 1 + qi = k - 1,  which implies that  rni < mi+l ,  

and we get a contradiction m0 < rnl < . . .  < m f  = rno. 

(b) The case A = (k, 2, 1 t) is very similar. The only difference is that  there is 

an additional nontrivial critical t-simplex 

[2, 1 , . . . ,  1, k] 

t 

(according to the idea of the previous matching, one would want to break 2 

into 1, 1, which is impossible). Thus, from the previous argument we derive 

the conclusion, unless the nontrivial critical cells (for the case t + 2 = k m  and 

t + 1 = kin) are in the neighboring dimensions. These cases are (4, 2, 1, 1), 

(4, 2, 1, 1, 1), (3, 2, 14), and (3, 2, 15); they can be verified directly. Observe that  

since for some cases we obtain a homotopy equivalence of (~x with a CW complex 

with 2 ceils in dimensions higher than 0, we cannot in general determine the 

homotopy type of 5;~. | 

Note that  since we are not using [3, Theorem 8.2, Corollary 8.4] for our proof 

of Proposition 3.4(a), we obtain the alternative proof of these results of BjSrner 

and Wachs on the homotopy type of the lattice of intervals generated by all 

(k - 1)-element subsets of {1 , . . . ,  n - 1}. 

3.2. IDENTIFICATIONS CAUSED BY ADDITIONAL RESONANCES.  Let us intro- 

duce one more piece of terminology. Recall that ,  given a composition, its reso- 

nances are simply linear dependencies of its parts with coefficients +1, 0, which 

we viewed as a pair of the subsets of the index set: those parts which get a co- 

efficient 1 and those which get a coefficient -1. We say that  a resonance r can 

be d e r i v e d  from a set of other resonances S if it follows from them as a linear 

equation. That  is, if the entries in an integer vector satisfy the equations from 

the set S, then they also satisfy the equation r. A standard linear-algebraic way 

to see it is to pass to the dual vector space and view resonances there as vectors 

with =hi, 0 coordinates. Then r can be derived from S if and only if it lies on the 

linear span of vectors from S. If the resonance r cannot be derived fi'om the set 

of resonances S, we say that  r is i n d e p e n d e n t  of S. 

Having this picture in mind, one can talk about adding independent resonances 

to the already existing set. If  one could in general describe what happens to the 
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topology of the corresponding stratum, the.. n one would have a general algorithm 

to compute the algebraic invariant of Hyp~. Unfortunately, the combinatorics of 

the situation seems prohibitively complex. 

In this subsection we take a small step on this road. Let us start with a simple 

observation. 

PROPOSITION 3.5: Let a = [ a t , . . . , a t ]  and & = [S t , . . . , S t ] ,  t >_ 3, be two 

compositions such that the set of resonances of 5 is equal to the union of the 

set of resonances of a with a new resonance 51 + �9 �9 �9 + 5k = 5k+1 + �9 �9 �9 + St, 

for some 1 _< k < t -  1. Let A = (alL...,at._.._.__)and ~ = (51 , . . . ,5~) ,  then 

H,(5~,) = H,(6~) @ Z(1), correspondingly H,(Hyp-~) = H , ( ~ )  G Z(3). 

Note: The condition on the sets of resonances of the compositions a and 5 in 

the formulation of Theorem 3.5 is much stronger that  just requiring that the 
k t resonance ~-:~i=1 5i = ~-~j=k+l 5 j  is independent of the resonances of a. It means 

that this is the only resonance added. For example, it implies the following: a 

has no resonance of the type ~ I  a~ = E j E J  aj ,  for nonempty sets I and J, 

such that  simultaneously I C_ {1 , . . . ,  k} and J C_ {k + 1 , . . . ,  t}. 

Proof" Clearly, 5~ is obtained from 5~ by gluing together two vertices indexed by 

the compositions [al + . . . + a k ,  ak+l + ' . . + a t ]  and [ak+l + - - . + a t ,  al  + . . -+ak] .  

Since the topological space 5~ is connected, when l(A) _> 3, the result follows from 

the homology long exact sequence of a pair. | 

Next we consider the case when the added resonance does not include all the 

blocks, but is still the only resonance added. 

SECOND STABILIZATION THEOREM 3.6: Let [ a b . . . ,  Up, ~1 . . . .  , ~q, 7 t , ' . ' ,  ~r] 

be a composition of type A, such that p >_ 1, q >_ 2, r >_ 1, whose set of res- 

onances includes 

(3.1) E1 + " "  + ~ q = 7 1 + ' " + % .  

Assume there exists [&l , . . . ,  &p, ~ b . . . ,  ~q, ~1,- .- ,  ~r], a composition of type 

~, such that it has exactly the same resonances as A, except for (3.1) On partic- 

ular, (3.1) is independent of the other resonances of A). Assume also that the 

block 7 = ~1 + " "  +/~q + "Y1 + " "  + % is strongly independent in ( a l , . . . ,  ap, 7). 

Then there exists a long exact sequence 

di-1 
. . .  ) ~_1i_2(~(a I ..... e , ) )  di) ~ i ( ~ )  } Hi(~;~) ) Hi -3(~(a l  ..... a:o)) ---~ " ' ' .  



202 D . N .  KOZLOV Isr. J. Math. 

If, furthermore, ~1 and ~2 are independent in ~, then di = O, and hence t-Ii(6~) 
can be found by solving the corresponding extension problem. In particular, i f  

. . . . .  f r e e  t h e n  = . . . . .  

A 

Note 1: The corresponding information about Hyp~ can be derived via the 

formula Hyp~ -~ susp 2 5~. 

Note 2: The case q _> 1, r _> 2 is symmetric to the case considered in Theo- 

rem 3.6, hence the same conclusion can be reached with/3's and 7's interchanged. 

If q = r = 1, then the simplicial complex ~ is contractible by Stabilization The- 

orem 3.1. 

Proos Let A (resp..4) be the simplicial subcomplex of 5i consisting of the 

simplices which are labeled by those compositions, where the sets of blocks 

{~1,'-',/~q} and {71,-. . ,  %} of ~ are summed up and the sum of ~1 , . . . ,  ~q 

is either in the same block as the sum of 7 b . . . ,  7r or to the left (resp. right) of 
it. Clearly, B = A N .4 is the simplicial subcomplex of ~ ,  where all the blocks 

r  r 7 b - . - ,  ~/r are summed up, and A U A is the simplicial subcomplex of 

~,, where the sets of blocks {~1,--.,  ~q} and {71,-. . ,  7r} of ~ are summed up. 
There is a simplicial map ~, > ~ which corresponds to imposing a new 

q r resonance ~ i = l  ~i = ~ j = l  7J on ~. Topologically, it corresponds to gluing the 

subcomplexes A and A together in the natural way. There is a simplicial bi- 

jection r between A and A, which interchanges the sums y~i q ,  ~/ and )-]~=1 7J" 

This bijection fixes B and therefore we can glue A together with A inside ~X 
by pointwise identifying those simplices which are mapped to each other by r 

Gluing together two points in the proof of Proposition 3.5 is a simple special case 

of this procedure. 
Let .4 denote the simplicial subcomplex of ~ consisting of simplices indexed 

by compositions where the sets {/3b.-.,/3q} and {71, .- . ,7r} are summed up. 

We have A = 5(a~ ..... ~p,~,~), where/3 =/31 + " "  +/3q = 71 + "'" + 7r- The block 

must be independent in (am,. . . ,  ap,/3,/3). 
Indeed, since 7 is strongly independent in ( a , , . . . ,  ap, 7) ,  there is no resonance 

of the type ~ i 6 l  ai +/3 +/3 = ~ j e J  aj.  The only other option for/3 not to be 

independent would be to have a resonance of the type Y~4eI ai +/3 = Y~jeJ aj.  
0~' q But then A would have resonances ~-]i~I * + ~i=l /3i  = ~'~j~g aj  and ~ i e l  ai + 

~-]j=i 7j = ~ _ j e j a j  �9 These two resonances imply (3.1), which contradicts the 

existence of A. 
So/3 is independent, and hence, by Stabilization Theorem 3.1(a), A is con- 

tractible. Furthermore, it is clear that  A, A and fi~ are all isomorphic, hence they 
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are all contractible. 

By the very nature of the gluing map (Is --+ 5~ we have a simplicial isomor- 

phism of pairs ((Is A U A) ~ (hx, -4); for the general criteria see Proposition 4.1. 

Combining this observation with a long exact sequence 

. , .  ----+ H i ( f i t )  ~ H i ( ~ x )  - - +  Hi( (~A,  A )  ----+ H i _ 1 ( 2 ~ )  ----~ �9 �9 �9 , 

we conclude that  tti(hx) =/~i(hx, A) =/~i(5s AU .4). We also have a long exact 

sequence 

--- ---+ Hi(AU A) d~> /~i(5s ----4 Hi(5s A) ---+ Hi - I (AU A) d,-l> . . . .  

Since both A and A are contractible, we have 

-fiIi(A (J .4) = ~Ii_l(A n A) = Hi_I(B) .  

Clearly B = (f(~1 ..... ~,,~), and, since "y is strongly independent in ( a l , . . . ,  ap, ~), 

we know that  B ~_ susp(5(a , ..... ~,)), by Stabilization Theorem 3.1(b). 

Let us now see that the homology map di : Hi(A U A) > Hi(5s induced by 

the inclusion map, is trivial, under the condition that/~1 and/~2 are independent 

in A. Let K be the simplicial subcomplex of 5s consisting of the simplices indexed 

by those compositions, where/~1 is either in the same block as ~2 or in the block 

with a smaller index than the block containing ~2. 

Clearly, K ~- 5(a ~ ..... ~ , ~  ..... ~ , ~  ..... ~.), where the set of resonances of the num- 

ber partition A = (51 , . . . ,  &p,/~1,...,/~q, ~1, . . . ,  ~r) is obtained from the set of 

resonances of A by adding the resonance/~1 =/~2 and everything which it implies 

together with the already existing resonances. 

Since/~1 and/~2 are independent in A, ~1 = ~2 is independent in A, hence, by 

Stabilization Theorem 3.1(a), K is contractible. On the other hand, K _D A UA, 
i 1 i 2 

so the inclusion map can be factored A U A --+ K --+ 55, and hence d, factors as 
�9 1 i 2 

well H.(A U ,4) ~ H . (K)  :-~ /~.(5s Since the middle term is 0, we conclude 

that di = 0. The last conclusion of the theorem now follows. | 

3.3. NONCANONICITY OF MAPS BETWEEN RESONANCES. Recall that  if Res A -- 

Res #, then 5x ~- 5~. Therefore, the simplicial complex (iRes X is well-defined. 

Whenever we have number partitions A :> p, there is an inclusion map i(p, A) : 

5, -+ (ix which induces i(#, A). : H.(5~) -+ H.(hx), and hence obviously i(#, A). : 

/~.(hRes~) -+ H.(haesX)- We conjecture, however, that i(#,A), depends on 

more than just the sets Res A and Res #, i.e., one cannot define a unique map 

i(Res #, Res A).. More precisely: 
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CONJECTURE 3.7: There exist number partitions A, p,/5, such that 

(1) A > p , A > / ~ ;  

(2) Res # = Res/~; 

(3) the homomorphisms of homology groups, i(tt, A), and i(~, A),, induced by 

the respective inclusion maps are nonisomorphic. 

For every n > 1, we define a partial order on the set {Res AI I(A) = n} by saying 

that Res A ~ Res A if and only if for some compositions a, resp. 6, of type A, 

resp. A, the set of resonances of & is a subset of the set of resonances of a. In such 

a case, a choice of the compositions a and & induces a map 7(&, a) : 65, --+ 6x, 

and further 7(6, a ) .  : H.(6~) -+ H.(6~). 

CONJECTURE 3.8: The isomorphism type of the map ~,(6, a ) .  depends not only 

on the actual number partitions A and A, rather than their sets of resonances, 

but even on the choice of the pair of compositions a and 0. 

Note: It is easy to come up with examples of number partitions A and A for which 

there are such pairs of compositions, which are nonisomorphic under the group of 

symmetries of the blocks of A. For example, A = (a, b, c, d, d), A = (x, x, x, y, y), 

61 = 62 = [a, b, e, d, d], a l  = [x, x, x, y, y], and a2 = [x, y, y, x, x]; the pairs 

((~1, al)  and (52,a2) are nonisomorphic. 

We would like to emphasize that in order to obtain an algorithm for computing 

the homology groups of the simplicial complexes 6Res ~, it is almost certainly 

essential to understand the maps i(#, A), and "y(6, a ) , ,  which, as Conjectures 3.7 

and 3.8 seem to suggest, may be a rather nontrivial task. 

4. Remaining questions and future perspectives 

We think that  understanding the maps i(tt, A). and "~(r A)). described in Sub- 

section 3.3, combined with the type of arguments used in the proof of Theo- 

rem 3.6, would lead to further progress in the computation of the homology 

groups of the simplicial complexes 6~. 

The following observation (the proof is left to the reader) is of use when one 

wants to compare two long exact sequences of a pair, as was done in Theorem 3.6. 

PROPOSITION 4.1: Let (71" 1 . . . .  ,71"1(),)) = A > # and (~ -1 , . . . , ~ -1 (~ ) )  : ~ > ]A be 

number partitions, such that / (A)  = l(A) and l(p) = l([*). We have a simplieial 

isomorphism of pairs (6~,5.) and (6~,6f~) induced by ~ri --+ 7ri, for 1 < i < /(A) 

(in which case, of course, f-I.(6~, 5.)) = ~I.(6~, 5f,)), i f  and only if the following 

conditions are satisfied: 
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(1) 5~ is the image o f  S~ under the m a p  induced by ~ri --+ fri; 

(2) i f  there is a resonance ~ i ~ I  ~ri = ~-~jeg zri in A, then either we have 

iEl jEJ 

where { f l , . - . ,  f t }  = {1, . . . , / (A)} " . ( I  U J) ,  or there is a resonance Z i e I  ~r~ 

: E j e J  ~J in i ;  
(3) the same as (2) above, with A and A, as well as # and p, interchanged. 

EXAMPLE OF A COMPUTATION. Let A = (3, 2, 2, 1), # -- (3, 3, 2), A = (5, 3, 3, 1), 

and ~ = (5, 4, 3); the conditions of Proposition 4.1 are satisfied. Clearly, 5(3,3,2 ) 

is contractible. By Stabilization Theorem 3.1(a) and Proposition 3.4 we have 

i~/.(5(5,3,3,1)) = Z(1), and, by direct observation, 5(5,4,3) is homeomorphic to S 1. 

Therefore we conclude that 

H,(5(3,2,2,1)) = H,(5(3,2,2,1), 5(3,3,2)) =/~,(5(5,3,3,1),  5(5,4,3)) = Z(2 ) (~ Z(1), 

where the last equality follows from the fact that the circle 5(5,4,3) does not pass 
through the vertex indexed by the composition (6, 6), hence the homomorphism 

of the homology groups i.  : H1(5(5,4,3)) -4 H1(5(5,3,3,1)), induced by inclusion, is 
a zero map. 
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